

Planning for Water Demands

Daniel J. Van Abs, PhD, PP/AICP Associate Professor of Practice Department of Human Ecology

Coalition for the Delaware River Watershed Forum

> RUTGERS School of Environmental and Biological Sciences

RUTGERS

Major Issues for Water and Planning

- What are the **sustainable** limits to water supply?
- Is economic activity constrained by lack of water supplies, inadequate capacity, or poor management of water infrastructure?
- Could our urban centers improve by reintegrating city form and function with water resources?
- PROBLEM: Utilities don't plan communities, and community planners often assume utilities will meet needs regardless.
- ASCE national scores for Infrastructure

Economic

- Drinking water (D)
- Wastewater (D+)

Social

Environmental

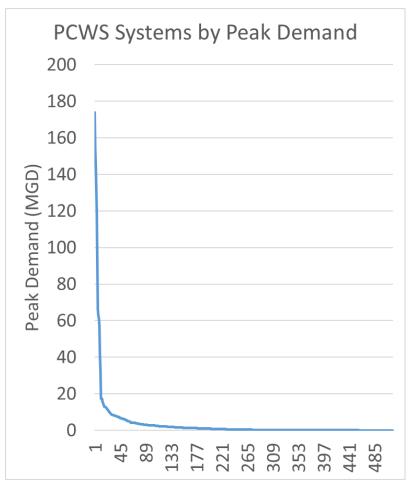
Key Background Information Needed*

- Existing water supplies and distribution systems
- Existing wastewater systems and receiving water capacity
- Existing stormwater systems

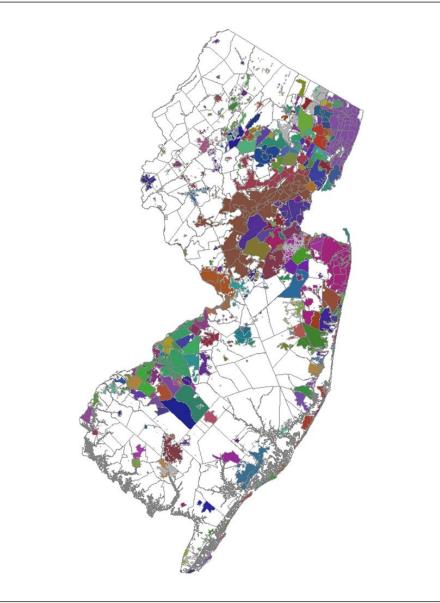
GERS

- Current system demands for water supply and wastewater
- Driving forces for water infrastructure needs
- Projected demands for water supply and wastewater
- Water stresses from existing and projected demands

*From Appendix A, Cesanek, Elmer and Graeff. Planners and Water. 2017. American Planning Association, PAS 588


NJDEP 2040 Demands Project

- 584 Public Community Water Supply (PCWS) systems
- Understand components of 2010 demands
 - Residential: indoor and outdoor, not including irrigation wells
 - Industrial


GERS

- Commercial/Public Facilities/ Institutional
- Model 2010 demands and compare to actual demands
- Project PCWS demands to 2040 – multiple scenarios

Population Results by PCWS System

- ~90% of NJ residents served by PCWS systems
- 13 PCWS systems 50% of all customers
- 37 PCWS systems 80% of all customers
- 547 systems just
 20% of all customers
- Most systems are <u>tiny!</u>

New Jersey Water System Populations (Top ~50%) by Residential Development Density

System	High Density	Moderate Density	Low Density	Total	% of PCWS Population
Suez - Hackensack System	448,835	286,380	39,932	775,148	9.83%
NJ American - Raritan	263,497	294,324	148,708	706,529	8.96%
NJ American - Coastal North	103,861	191,690	71,594	367,145	4.66%
NJ American - Delaware Basin	257,948	37,473	979	296,400	3.76%
Passaic Valley Water Commission	82,799	189,811	18,424	291,034	3.69%
NJ American - Passaic	257,094	1,654	-	258,749	3.28%
Newark Water & Sewer Dept	104,820	108,349	41,754	254,923	3.23%
Jersey City MUA	238,444	-	-	238,444	3.02%
Middlesex Water Company	113,203	70,866	12,429	196,498	2.49%
Trenton City Water Dept	101,201	82,855	8,375	192,431	2.44%
Liberty Water Company (Elizabeth)	116,348	5,473	1	121,822	1.55%
NJ American - Atlantic	21,665	73,312	19,359	114,336	1.45%
Suez - Toms River System	32,661	66,153	12,142	110,955	1.41%

8 of the largest 13 systems are investor-owned. Jersey City and Liberty are managed under PPP contracts.

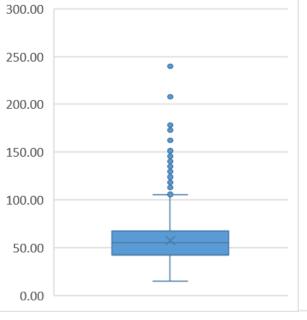
Understanding Residential Demands

- Current average household and per capita demands
- How do rates vary:
 - Seasonally

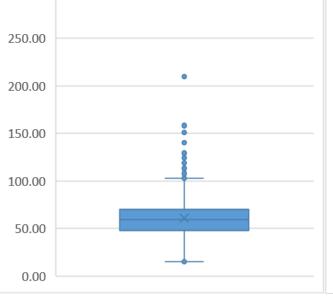
TGERS

- By geographic area
- By housing type
- Other factors?
- How might residential per capita rates change?

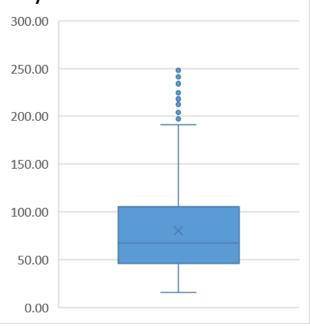
Results: Per Capita Residential Demands (Case Study Weighted Averages)


Residential Density/Region	Coastal Plain	Piedmont	Highlands/ Ridge & Valley
High Density (HD) Annual	47.92	58.46	42.04
Medium Density (MD) Annual	59.04	61.20	53.52
Low Density (LD) Annual	93.27	73.95	61.09
High Density (HD) Summer	53.49	62.61	42.47
Medium Density (MD) Summer	75.88	76.62	59.42
Low Density (LD) Summer	141.05	108.92	81.75
High Density (HD) Non-Summer	45.13	56.27	41.82
Medium Density (MD) Non-Summer	50.59	53.17	50.62
Low Density (LD) Non-Summer	69.36	56.61	50.84

	Density	Ratio
Ratio of Summer Use	high	1.15
to Non-Summer Use	medium	1.50
(Per Capita Per Day)	low	2.04

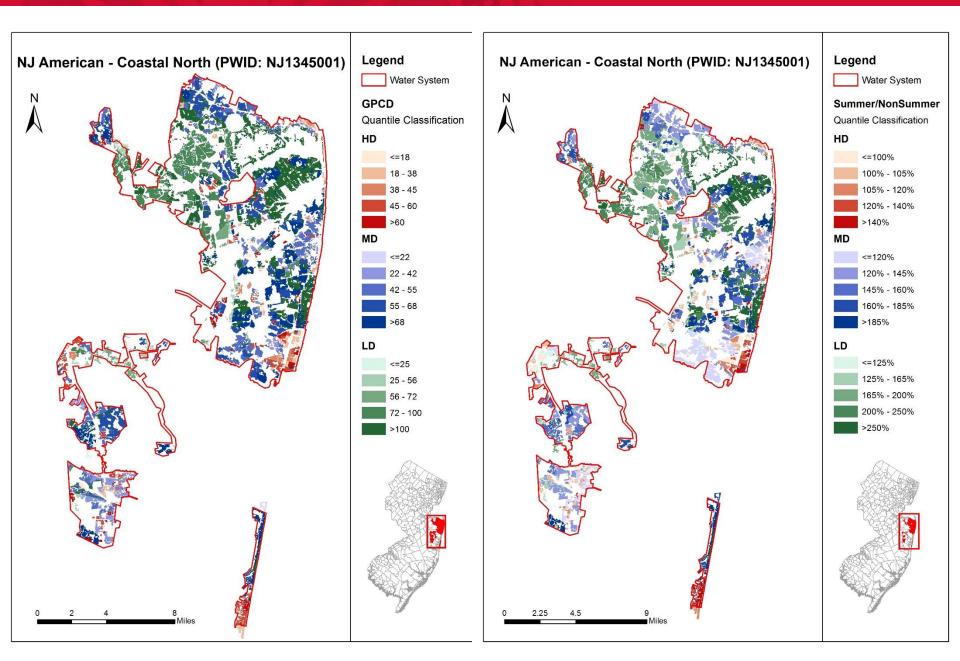

Variations in Residential Water Demand

(Derived from data representing 3.6 million people in NJ)


High Density Residential Per Capita Demands: Case Study PCWS Systems

Medium Density Residential Per Capita Demands: Case Study PCWS Systems

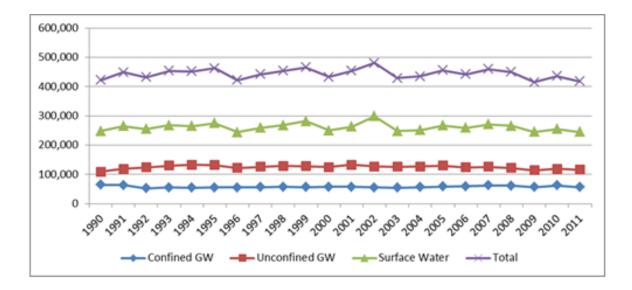
Low Density Residential Per Capita Demands: Case Study PCWS Systems



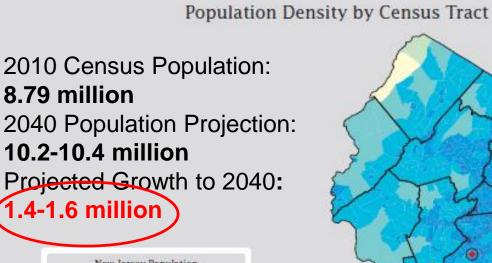
1326 Results

489 Results

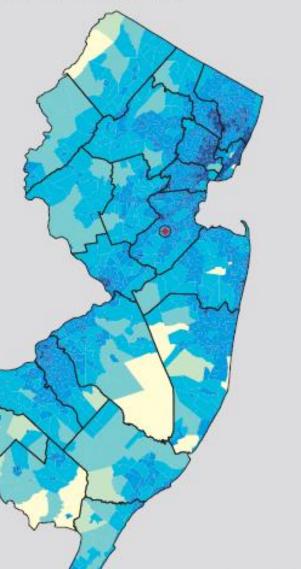
RUTGERS

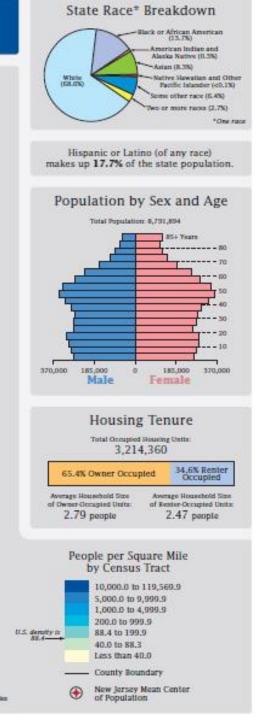

Drivers for Change

- Population growth and demographic change
- Economic growth and business demands
- New regulatory requirements
- Changing public expectations
- Aging and failing infrastructure
- Increasing infrastructure costs
- Climate change more frequent hot and dry periods, not always at the same time


What About 2040?

 New Jersey total water demands have been flat despite adding 1.06 million people (15%), 1990-2010


- Complicating factors during this period: industrial demand reductions, changes in non-revenue water
- Population trends uncertain, <u>highly</u> dependent on net migration
- Per capita residential demands expected to decline


2010 Census: New Jersey Profile

	New Jersey Population 1970 to 2010
2010	8,791,894
2000	8,414,350
1990	7,730,188
1980	7,364,823
1970	7,168,164

Scenarios for Projecting 2040 Demands

- Static: Residential per capita demand not changed
- Conservation Scenario: Reduction of Residential
 per capital demand toward but not below 35 gpcd
- **Commercial**: Varies with population change
- Industrial: No change

GERS

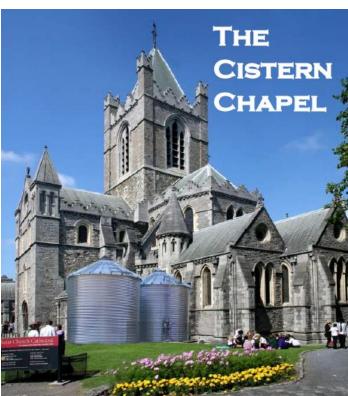
- Non-Revenue Water: Two options applicable to each scenario
 - NRW status quo existing or current averages
 - NRW aggressively controlled

This Photo by Unknown Author is licensed under <u>CC BY-NC-SA</u>

Implications for 2040 Water Demands (37 Largest Systems, 80% of Current Demands)

Total MGD	Scenario	Change
702.879	2008-2015 average demands	Baseline Condition
726.174	No Conservation with Nominal Water Losses	3.31% <u>higher</u> than Baseline
684.463	No Conservation with Optimum Water Losses	2.62% <u>less</u> than Baseline
680.541	Conservation with Nominal Water Losses	6.28% <u>less</u> than No Conservation scenario
641.464	Conservation with Optimum Water Losses	6.28% <u>less</u> than No Conservation scenario

Conservation/Optimum Water Loss scenario is 11.67% <u>less</u> than No Conservation/Nominal Water Loss scenario, despite 1.4 million new residents. 11 increase, 26 decrease


Uses of the Results

- Verify demands statewide results aren't necessarily correct for any one system but the approach is replicable
- System and subsystem demand projections evaluate existing or potential stresses to system
- **AMI/AMD targeting** priorities using demand patterns
- Drought conservation target areas with high annual demands and high summer:non-summer ratios.
- **Consumptive water uses** controlling lawn irrigation will be important to future water supply sufficiency.
- Development patterns have a major influence on demands – strengthens the case for cluster development, redevelopment

Contact Information

Daniel J. Van Abs, PhD, PP/AICP

Associate Professor of Practice for Water, Society & Environment Department of Human Ecology School of Environmental & Biological Sciences Rutgers-The State University of New Jersey 55 Dudley Road, New Brunswick, NJ 08903 vanabs@sebs.rutgers.edu www.danvanabs.com http://humanecology.rutgers.edu/ faculty.asp?fid=101

